Ergodic Dynamics of the Stochastic Swift-hohenberg System
نویسندگان
چکیده
Nonlinear Analysis B: in press, 2004. The Swift-Hohenberg fluid convection system with both local and nonlocal nonlinearities under the influence of white noise is studied. The objective is to understand the difference in the dynamical behavior in both local and nonlocal cases. It is proved that when sufficiently many of its Fourier modes are forced, the system has a unique invariant measure, or equivalently, the dynamics is ergodic. Moreover, it is found that the number of modes to be stochastically excited for ensuring the ergodicity in the local Swift-Hohenberg system depends only on the Rayleigh number (i.e., it does not even depend on the random term itself), while this number for the nonlocal Swift-Hohenberg system relies additionally on the bound of the kernel in the nonlocal interaction (integral) term, and on the random term itself. Submitted to: Nonlinear Analysis B
منابع مشابه
Stochastic Swift-hohenberg Equation near a Change of Stability
We review recent results on the approximation of stochastic PDEs by amplitude equations. As an example we focus on the Swift-Hohenberg equation.
متن کاملThe Swift-Hohenberg equation requires non-local modifications to model spatial pattern evolution of physical problems
I argue that “good” mathematical models of spatio-temporal dynamics in two-dimensions require non-local operators in the nonlinear terms. Consequently, the often used Swift-Hohenberg equation requires modification as it is purely local. My aim here is to provoke more critical examination of the rationale for using the Swift-Hohenberg equations as a reliable model of the spatial pattern evolutio...
متن کاملDislocations in an anisotropic Swift-Hohenberg equation
We study the existence of dislocations in an anisotropic Swift-Hohenberg equation. We find dislocations as traveling or standing waves connecting roll patterns with different wavenumbers in an infinite strip. The proof is based on a bifurcation analysis. Spatial dynamics and center-manifold reduction yield a reduced, coupled-mode system of differential equations. Existence of traveling dislocat...
متن کاملInterfaces between rolls in the Swift-Hohenberg equation
We study the existence of interfaces between stripe or roll solutions in the Swift-Hohenberg equation. We prove the existence of two different types of interfaces: corner-like interfaces, also referred to as knee solutions, and step-like interfaces. The analysis relies upon a spatial dynamics formulation of the existence problem and an equivariant center manifold reduction. In this setting, the...
متن کاملGrain boundaries in the Swift-Hohenberg equation
We study the existence of grain boundaries in the Swift-Hohenberg equation. The analysis relies on a spatial dynamics formulation of the existence problem and a centre-manifold reduction. In this setting, the grain boundaries are found as heteroclinic orbits of a reduced system of ODEs in normal form. We show persistence of the leading-order approximation using transversality induced by wavenum...
متن کامل